CURSO INTERACTIVO PARA EL DIPLOMA DE OPERADOR RADIOAFICIONADO

CURSO ON-LINE INTERACTIVO PARA EL DIPLOMA DE OPERADOR RADIOAFICIONADO Por Luis A. del Molino EA3OG Un curso interactivo es algo más divertido y pedagógico que la mera lectura de un libro. En Leer más»

IP fija o dinámica, pública o privada

La IP Pública o privada, fija o dinámica Una introducción al tema de las IP (direcciones que utiliza de Internet), que nos ayudará a comprender cómo se configura un ordenador para localizarlo Leer más»

TÓPICOS DE LA RADIOAFICIÓN 5: Un trozo de cable como hilo largo necesita un balun 9:1?

En el Test sobre tus conocimientos prácticos sobre la radioafición, preguntábamos qué había de cierto sobre cierta idea muy difundida entre la radioafición sobre los hilos largos, y una de las que Leer más»

EL MODO ROS: ¿YA LO HAS PROBADO? (1ª parte)

por Luis A. del Molino EA3OG Esta es la primera parte de una serie de tres textos que pretenden la divulgación y dar la bienvenida a una nueva modalidad digital que ha Leer más»

Tag Archives: Tierra de RF

Contra la tierra común de RF

Diálogos con EA3OG: Contra la tierra común de RF

por EA3OG

 No consigo acabar con la práctica de la puesta a tierra común de RF en equipos y acopladores, pero confío en que podré convenceros de que es perjudicial cuando hayáis leído “el porque”.

Llevo años luchando por desacreditar la toma de tierra común para RF y recomendando que no se utilice por sistema, si no es en algún caso muy concreto. Pero los fabricantes son más poderosos e insistentes que yo e insisten en recomendarla e instalarla en los equipos y acopladores. Para postre, es importante que todos los equipos tengan una toma de tierra común eléctrica y eso contribuye a la confusión general entre las dos clases de tomas de tierra.

Desgraciadamente, siempre descubro que la mayoría de radioaficionados no ha entendido bien la cuestión, por lo que me tomo la libertad de volverlo a sacar a relucir con tan corto intervalo de tiempo, pues ya lo expliquéantneriormente  en los Diálogos con EA3OG de la revista CQ de enero de 2006, pero confío en que esta vez os convenza para siempre.

 ¿Dices que la tierra común de RF no sirve para nada?

En el texto del artículo dedicado a las tomas de tierra en general, ya declaraba que una toma de tierra común de RF no sólo no servía para nada, sino que incluso es contraproducente. Y mucho más ahora en que los equipos de nuestra estación ya vienen generalmente todos equipados con un tercer hilo (amarillo-verde) en el cable de alimentación, de forma que ya disponen casi todos de una toma de tierra común eléctrica que deja todos los chasis conectados a la toma de tierra común de la red.

¿Por qué es tan importante que no circule RF por un cable de tierra común?

Porque si realmente ese cable cumpliera su función y circulara por el cable una buena corriente de RF, se modificaría el diagrama de radiación de nuestra antena y una buena parte de nuestra transmisión se radiaría dentro de nuestra estación. Por otra parte, lo más probable es que esa radiación tuviera una polarización que no coincidiría con la de nuestro sistema radiante y perjudicaría su funcionamiento, aparte de afectar a su directividad, como vamos a ver más a fondo a continuación.

N. del E. Hace algún tiempo, al reparar una fuente de alimentación conmutada de un PC (de buena marca y absolutamente “silenciosa” en RF), advertí que el hilo verde-amarillo que unía el módulo a la toma de tierra del conector de red llevaba incorporado un aro de ferrita, sobre el que se habían devanado cuatro espiras. Precisamente para evitar la propagación de RF sobre la red, ¡exactamente lo que sostiene Luis!

Si nos hemos tomado mucho interés en que nuestra antena tenga una buena ganancia y directividad, y radie toda nuestra potencia de RF en un lugar lo más alto posible, con la altura adecuada, con el ángulo de elevación más conveniente, si entonces circula RF por nuestro flamante cable de toma de tierra común de RF, no se podrá evitar que se ponga a radiar también, y es evidente que perturbará el diagrama de radiación de nuestra maravillosa antena y lo enviará al cuerno.

 ¿Y qué es lo que te pone tan nervioso que te hace volver a escribir sobre el tema?

El que los fabricantes de equipos y accesorios (acopladores) insisten en recomendarla siempre, tal como he descubierto al comprar un acoplador automático, uno de los más modernos acopladores actuales, pues sus fabricantes lo recomiendan exponiendo ideas anticuadas, ideas de los tiempos en que no se entendía bien el comportamiento de la RF y de cuando los cables de alimentación de los equipos no disponían de tercer hilo de puesta a tierra eléctrica. Pero tengo la esperanza de que algún día lean mis artículos y se enteren de que lo que recomiendan es un gran error y que deberían matizarlo muchísimo mejor y que la toma de tierra de RF sólo debe utilizarse con antenas de hilo largo.

Pero empecemos explicando las cosas desde el principio:

¿Es correcto aconsejar una toma de tierra común eléctrica?

Efectivamente, es un gran acierto recomendar una toma de tierra eléctrica común para todos los equipos que van conectados entre sí, pero en eso no se debería incluir nunca en este capítulo a los equipos que no llevan alimentación propia, como por ejemplo los acopladores de antena no automáticos. No la necesitan. Recordemos bien el por qué.

 ¿Por qué es tan importante la toma de tierra común eléctrica?

Porque esta conexión común es la que garantiza que todos los chasis metálicos están al mismo potencial eléctrico y eso es lo que evita que no nos piquemos (no suframos descargas eléctricas de corriente alterna) cuando conectamos y desconectamos los equipos entre sí y con sus accesorios externos, así como tampoco al conectar y desconectar las antenas.

 ¿Si algún equipo no dispone de tercer hilo es importante colocarle una toma de tierra común eléctrica?

Sí, es importante unirlos todos con algún cable, de modo que si hay algún otro equipo que sí dispone de tercer hilo, el problema de la puesta a tierra eléctrica quedará ya resuelto. Y si ningún equipo dispone de este tercer hilo, pues es importante que los conectemos todos entre sí de algún modo y a una toma de tierra común eléctrica. Pero es importantísimo que no permitamos que circule la RF por este cable.

 ¿Por qué la RF no debe circular de ningún modo por este cable de tierra?

Porque si circula efectivamente RF por ese cable en transmisión, nunca nos acordamos de que todo lo que afecta al diagrama de radiación de nuestra antena en transmisión, afecta exactamente igual al diagrama de la antena en recepción, y éste diagrama es mucho más importante, como ya he explicado en artículos anteriores.

Si habéis leído la revista CQ de abril 2007, ya explicaba en ella que la ganancia de la antena en recepción puede llegar a mejorar nuestra sensibilidad hasta el doble de su ganancia, al disminuir el ruido exterior captado, al mismo tiempo que aumenta la señal con su ganancia. Así que se ve muy claramente que, si la importancia del diagrama de radiación de la antena en recepción es doble que en transmisión, debemos procurar no estropearlo todo con cables de tierra de RF capaces de radiar y, no lo olvidemos nunca, de captar también RF en recepción.

Por otra parte, si hemos tomado grandes precauciones para que nuestra antena directiva tenga una gran relación frente/espalda (Front to back) y podamos utilizarlo para atenuar alguna estación que nos perturba, tengamos en cuenta que esta propiedad nos la cargamos olímpicamente con la radiación (y captación) de nuestra preciosa toma de tierra común por la que circula RF. Porque no olvidemos que ese cable de toma de tierra común de RF es capaz de captar señales en recepción también.

¿Y si no circula energía de RF por ella? ¿La aceptarías entonces?

Entonces más vale sacarla porque no sirve para nada. Es un cable inútil que es mejor retirar, si ya disponemos de una toma de tierra común eléctrica. Si no disponemos de ninguna puesta a tierra común eléctrica, sea bienvenida, pero asegurándonos de que no circula RF por ella en transmisión.

 ¿Por qué estás tan seguro de que cualquier cable de tierra para RF radiará y captará energía?

Seguro, no estoy, aunque si operamos en diversas bandas, en alguna nos perjudicará, porque si la estación no está en un sótano o en una planta baja sin sótano, cualquier toma de tierra no será lo bastante corta y tendrá una longitud realmente apreciable a efectos de radiofrecuencia. Es corriente que en una vivienda unifamiliar y de varias plantas la estación esté en el piso más alto. Así que la toma de tierra siempre tendrá unos cuantos (o muchos) metros o pisos. No digamos si se tiene la estación en un piso elevado de un edificio de apartamentos.

Lo normal es que como mínimo tenga una longitud apreciable y esa longitud podría llegar muy fácilmente a ser un cuarto o media onda de longitud en alguna de las frecuencias que trabajamos. Y ahí comienzan los problemas. Si resuena y es un cuarto de longitud de onda, pondrá un máximo de RF en el equipo, justo lo contrario de lo que pretendemos. Y si es media longitud de onda, de forma que ponga un mínimo de tensión de RF en ambos extremos, malo también porque resonará de forma independiente con efectos inesperados en el diagrama de radiación de tu antena.

 ¿Qué recomiendas instalar si no tenemos instalado el tercer hilo de puesta a tierra común eléctrica en nuestra casa?

Si no disponemos de toma de tierra eléctrica y nos vemos obligados a conectar todos los equipos con un cable de tierra común, cable que deberemos llevar hasta alguna toma de tierra, yo recomiendo que ese cable de tierra sea aislado (recubierto) y que lo enrolles en anillos de ferrita o en rectángulos partidos de ferrita, de forma que se impida que circule cualquier RF por este cable. Y que además del mismo modo procuremos impedirle cualquier resonancia que se pudiera producir en él.

¿Y no circulará RF por una instalación normal con tercer hilo amarillo-verde?

Es posible, pero a mí no se me ocurre cómo evitar que circule por ella sin modificar la instalación eléctrica de la casa, de forma que lo más recomendable es alejar la antena o el sistema radiante tanto como se pueda de la casa o del apartamento, sin pasarnos demasiado con la distancia, para que las pérdidas en el cable de transmisión o de bajada no sean excesivas y sea peor el remedio que la enfermedad.

Si se sospechara de algún problema de este tipo, lo que sí se puede hacer es que todos los equipos de la estación estén conectados a regletas de enchufes, que luego se llevarán a una única conexión con la red con un solo cable, el cual se podría enrollar en anillos o montarle cilindros partidos de ferrita. Así se solucionaría muy fácilmente el problema.

 ¿En qué caso único se debe utilizar realmente una toma de tierra de RF?

Cuando utilizamos una antena de hilo largo, entonces es imprescindible que realicemos una buena toma de tierra de RF que sirva de contraantena al hilo largo, para que nuestra instalación eléctrica no se convierta en la contraantena del sistema radiante, con todos los problemas que eso genera. De todos modos, esa toma de tierra de RF se recomienda realizarla fuera de la casa, para que la RF circule principalmente fuera de nuestra estación y no perturbe todos los elementos eléctricos interiores, como televisores y amplificadores de audio. Claro que eso no es tan fácil de realizar en un apartamento, pero también es difícil montar un hilo largo en el terrado de un edificio de apartamentos. Deben ser pocos los que lo han conseguido.

Ahora, para la toma de tierra del hilo largo, tenemos además dos posibilidades: la primera, utilizar un acoplador manual o automático en el interior de la estación para acoplarlo a nuestro transmisor; o lo que es mucho mejor como segunda opción: un acoplador remoto automático. En efecto, es mejor utilizar un acoplador automático exterior hermético a prueba de intemperie. Con este último, si además disponemos de una toma de tierra exterior, nos aseguramos que toda la RF circule realmente en el exterior de la estación y nos ahorraremos muchos problemas. Actualmente empiezan a haber acopladores automáticos a precios asequibles incluso para exteriores.

 ¿Y qué diablos podemos hacer si detectamos RF en el interior de la estación, si tú no aconsejas una toma de tierra para RF para eliminarla?

Supongo que te refieres a qué se puede hacer cuando te quemas el bigote al acercarte a la boca el micrófono al transmitir, o que el manipulador te quema cuando lo tocas sin querer en transmisión, o aparece audio en los altavoces del sistema de alta fidelidad, que son los síntomas de la presencia de una RF considerable en el interior de la estación.

Lo más probable es que tengamos una RF que circula por el exterior del cable coaxial de bajada de la antena, porque trabajamos con algún tipo de antena asimétrica alimentada por cable coaxial y, por ejemplo, siempre se ha dicho erróneamente que las antenas verticales no necesitan balun para funcionar porque son asimétricas y se adaptan perfectamente a un cable de alimentación asimétrico como es el cable coaxial. Y esto es falso. Éste ha sido uno de los errores que se ha perpetuado en el mundo de la radioafición de toda la vida. Las antenas verticales también pueden inducir corrientes en el exterior de la malla del cable coaxial y, por tanto, llegar a la estación y quemar los bigotes del operador y las manos del radiotelegrafista.

Ya sabéis que siempre he recomendado alimentar las antenas verticales con balun 1:1 o colocar anillos o rectángulos de ferrita en los cables de alimentación, tanto en la antena, como en el interior de la estación, para que no circule ninguna corriente de RF por el exterior de la malla, porque esas antenas son tan sensibles como los dipolos o cualquier antena horizontal a que la RF se propague por el exterior del cable de bajada hasta la estación.

 Frases inadecuadas en los manuales

Por ejemplo, en el manual de un acoplador automático recién comprado se puede leer la siguiente traducción:

“Precaución: Para seguridad del operador, debe instalarse siempre una buena tierra exterior o una toma a una cañería de agua conectada a la caja del acoplador. Asegúrese de que el transmisor y los demás accesorios tienen una tierra de protección. En los paneles traseros de los equipos hay una palomilla señalada ‘GROUND’ para este propósito. Para su seguridad, use tanto buenas tierras de protección eléctrica como tierras de RF. Es particularmente importante el tener una buena tierra para la RF cuando se usa una alimentador monofiliar”.

No explican las diferencias entre tomas de tierra eléctricas y para RF, con lo cual fomentan la confusión.

Por un futuro mejor

Tengo la esperanza de que este artículo se divulgue lo suficiente para que nadie coloque innecesariamente cables de la puesta a tierra para la RF. A ver si consigo que se enteren los fabricantes que no deben recomendarlas en sus manuales y consigo cargármelas de una vez por todas. Por mí no quedará.

73 Luis A. del Molino, EA3OG

 

TÓPICOS DE LA RADIOAFICIÓN 3: Una tierra común para la RF es indispensable?

TÓPICOS DE LA RADIOAFICIÓN-3:  LA TOMA DE TIERRA COMÚN DE RF

La radioafición está llena de tópicos que circulan como si fueran auténticas verdades y que no están basados en ninguna realidad científica ni experimental. En este artículo intentamos desmontar una de las más difundidas, incluso por mismos los fabricantes de acopladores y transceptores, que recomiendan unir todos los equipos una toma de tierra común, para evitar la circulación de RF, justamente lo contrario de lo que se debe hacer.

 En el Test sobre tus conocimientos prácticos sobre la radioafición, planteábamos cuál era la respuesta correcta a la pregunta:  “Una buena toma de tierra de RF en la estación elimina la RF en el micro y en la estación”. ¿Verdadero o falso?

La respuesta que dábamos como correcta en el test sobre tus conocimientos es que esta afirmación es totalmente falsa.  Las tomas de tierra en el interior de la estación deben ser exclusivamente para protección eléctrica y debemos evitar en todo lo posible que circule RF por ellas.

Si tenemos RF en el micro, no debe intentar realizarse la cura con una puesta a tierra de RF, porque lo peor que nos puede ocurrir es que una toma de tierra de RF común en la estación funcione realmente como toma de tierra de RF y conduzca la radiofrecuencia y la derive hacia tierra. Entonces, como todo conductor que conduce RF, ese cable actúa realmente como una antena y radia energía en el interior del shack, en nuestra estación como puede verse en la figura 1, con los consiguientes problemas de que todo se llena de RF, desde el micro hasta el manipulador electrónico.

 

Figura 1: Dipolo sin balun y toma de tierra interior

 

Así que la prudencia aconseja que debemos impedir por todos los medios posibles que la RF circule por cualquier toma de tierra de protección eléctrica en el interior de la estación y eso significa evitar en todo lo posible las tomas de tierra comunes para RF en la estación.

Sin embargo, es fundamental la toma de protección eléctrica

¿Es posible que todos nuestros equipos no estén al mismo potencial eléctrico si están enchufados a la misma red eléctrica? Desgraciadamente sí.

Modernamente, por fortuna, es difícil que todos los equipos no estén al mismo potencial eléctrico, porque cualquier equipo o dispositivo eléctrico de cierta potencia debe llevar instalado un tercer hilo en la clavija y en el cable de alimentación, normalmente un cable recubierto con un aislante de color amarillo con franjas verdes, que debe quedar conectado a una tierra común de protección de la instalación eléctrica actual, tierra común que actualmente se exige que se encuentre en todos las bases de enchufes modernos. Pero hay muchas excepciones.

Desgraciadamente no todas las bases de enchufes del domicilio son modernas ni todos los equipos llevan el tercer hilo en la clavija del enchufe ni en el cable de alimentación. Si no lo llevan, puede darse muy bien que dos dispositivos electrónicos se encuentren a distinto potencial eléctrico y experimentemos una descarga al manejarlos con las dos manos.

Es muy frecuente encontrarse con televisores cuyo potencial de masa común (chasis) es distinto del de la tierra de la toma de antena y experimentemos una descarga al intentar conectar el cable coaxial de antena, por poner un ejemplo con el que yo me he encontrado (y picado) muchas veces.

La fuente de alimentación de algunos equipos enchufados a 220 V sin tercer hilo es muy probable que lleve condensadores de desacoplo de RF que no son exactamente iguales. Esto hace que el chasis de estos equipos puedan quedar a potenciales diferentes. Por ejemplo, puede ocurrir que uno de ellos tenga un potencial intermedio equivalente a 110 V AC (220/2) y que otro quede a un potencial intermedio de 175 V o 45 V (220-175), según la posición de la clavija, con lo que aparece una diferencia de potencial entre ambos equipos de 65 V. Y esta tensión pica, aunque no peligrosamente, pues la descarga se produce a través de condensadores con una reactancia suficientemente elevada. Pero es suficientemente  molesta.

La distribución más normal de corriente alterna se basa en 3 fases de con diferencia de 380 V entre ellas. pero con una tensión al conductor neutro de 220 V entre fase y neutro. Se distribuye a cada apartamento con un solo cable vivo y un solo cable de retorno, aparte de un cable de tierra independiente que no lleva corriente, pero que se utiliza como cable de protección eléctrica. Realmente sólo pica uno de los dos cables, pero con la tensión alterna de 220 V, que es  muy peligrosa (Figura2).

 

Figura 2: Redes de distribución eléctrica de baja tensión

 

Pero también podemos encontrarnos con instalaciones más antiguas con 220 V entre las 3 fases y solamente 125 V entre fase y neutro. Para proporcionar modernamente 200 VAC en estas instalaciones, se distribuye a los domicilios actuales con dos fases vivas que pueden dar descargas de 125 V al despistado que toque uno cualquiera de los dos cables. Y los 125 V son también muy peligrosos. Cualquier tensión alterna superior a los 50 V es realmente peligrosa.

 La protección del interruptor diferencial o IPC

Para protegernos de las descargas peligrosas (mayores de 30 mA) deben instalarse también obligatoriamente un tipo de relés diferenciales, que saltan cuando hay una corriente desigual en los dos hilos del relevador. Esta diferencia de corrientes se produce cuando aparece una corriente de fuga que circula fuera del circuito formado por los dos hilos, es decir, circula solamente por una de ellos hacia un tierra  en lugar de retornar por el otro cable.

 

Figura 3: Esquema de un IPC o protector diferencial

 

Supongamos que tocamos una lavadora que ha tenido un problema de aislamiento y se produce una fuga que pone el chasis en tensión y  en ese momento la tocamos con las manos mojadas. La lavadora puede que no haya disparado hasta ahora el diferencial, porque los tacos de goma anti-vibración la mantenían aislada del suelo, por lo que nosotros, al tocarla, le proporcionamos un circuito de retorno a la tensión del chasis metálico a masa. Si no existiera el protector diferencial que desconecta al detectar una corriente que no pasa por los dos conductores, sino solamente por uno de ellos a través de nuestro cuerpo, podríamos morir electrocutados.

Así que no lo olvidéis. El perfecto funcionamiento del interruptor diferencial es fundamental para nuestra protección. Debemos comprobar que funciona correctamente pulsando un botoncito de prueba situado en el exterior junto al interruptor. El protector diferencial debe saltar inmediatamente y desconectar la corriente eléctrica.

¿Por qué es necesario que nuestros equipos estén todos al mismo potencial?

Para evitar que suframos descargas al conectar y desconectar un elemento de la estación de otro elemento diferente. Lo más normal es que cualquier dispositivo que utilicemos, sea un acoplador o un medidor de ROE o un manipulador electrónico, o un filtro de audio, lleve su propia alimentación incorporada y su chasis quede a diferente potencial unos de otros, si no van equipados con el tercer hilo. Debemos prestar especial atención a los equipos con clavija de solamente dos polos sin contacto lateral de masa, pues es evidente que adolecen de este problema. Debemos unirlos de algún modo, pero procurando siempre que no circule la RF por estos cables de tierra común eléctrica (Figura 3).

Figura 4: Puesta a tierra común de los equipos.jpg

 

¿Cómo podemos impedir que la RF se pasee por nuestra estación?

El elemento esencial para conseguir que la RF no circule por el interior de nuestra estación, no es ni más ni menos que la colocación del balun (de Balance/Unbalance) más adecuado en la antena para evitar que circulen corrientes de RF independientes por el exterior de la malla del cable coaxial.

Como hemos visto en un artículo anterior (Revista CQ 331 de Junio de 2012), si no se coloca  un bálun en el punto donde se conecta un cable coaxial asimétrico, se puede producir corrientes asimétricas que circulan por el exterior del cable y que no solo radian RF como si formaran parte de la antena, sino que la conducen al interior de la estación, buscando un camino para llegar a tierra, camino que pasa por los cables de protección eléctrica.

 

Figura 5: Dipolo con balun

 

¿Qué tipo de balun se recomienda en el centro de un dipolo?

En general, es más recomendable el balun de tensión con tres devanados de la Figura 5, que el simple balun de arrollamiento o con anillos de ferrita, llamados vulgarmente balunes de corriente, aunque en algunas antenas se puede utilizar este último sin problemas.

Digo que es preferible el balun de tensión porque por una parte une en cierto modo conductivamente el vivo y la malla para corrientes continuas, con lo que elimina cualquier posibilidad de que se cargue de estática el hilo central del cable coaxial.  Le concede un camino de descarga para la electricidad estática.  Por otra parte, dicen muchos expertos que esa unión impide en cierto modo que el hilo central del coaxial y la rama de la antena a la que va conectada se comporten como una antena vertical que capta ruidos eléctricos de campo eléctrico vertical de las proximidades y hace que la antena sea menos ruidosa.

Sin embargo, muchas Yagis y antenas directivas horizontales ya llevan algún tipo de unión entre el vivo y la malla, realizado por medio de adaptaciones simétricas de tipo betamax, o por medio de líneas de ¼ de onda entre el vivo y la malla de la antena (antenas de VHF y superiores) colocados en la viga de soporte (boom). En ese caso, los balunes Unun ( de Unbalance/Unbalance) de anillos de ferrita (de material adecuado a la frecuencia de la antena) son perfectamente aconsejables para evitar las corrientes de malla que pudieran modificar el lóbulo de la antena.

 

Figura 6: Balun de tensión

Figura 7: Unun de ferritas

 

No olvidemos que algunas antenas de VHF llevan balunes de ¼ de onda de tipo bazooka que impide las corrientes por la malla de coaxial. En ese caso, hay que comprobar si hay circuito entre el vivo y la malla para evitar problemas de acumulación de estática.

¿Es suficiente este balun de tensión para evitar corrientes de malla?

A veces no es suficiente y no basta con colocar este balun o choque en la antena para impedir la circulación de RF por el exterior del cable, porque da la casualidad de que la bajada tiene una longitud resonante en ½ onda y la malla del coaxial se comporta como una antena receptora, captando directamente la radiofrecuencia radiada por la antena. Para resolver este segundo problema, lo mejor es colocar otro balun de corriente Unun  (de Unbalanced/Unbalanced)  inmediatamente en la estación, junto a la salida del transmisor o del acoplador de antena.

Un balun de corriente Unun (Figuras 7 y 8) consiste en un choque de RF realizado con anillos de ferrita colocados por el exterior de un trozo de cable coaxial que pasa por su interior y que impide su circulación por el exterior de la malla. De esta forma, obligamos a que toda la RF circule únicamente por el interior del cable coaxial de salida. Recordemos que la corriente del vivo del cable coaxial y del interior de la malla son siempre iguales y opuestas y su radiación se cancela en cualquier caso.

La colocación de una toma de tierra en lugar de este choque UNUN en el interior de la estación podría hacer que la RF captada por radiación por la bajada de coaxial circulara por ese cable de toma de tierra, que entonces llenaría de RF captada en el interior de la estación, produciendo todo tipo de interferencias en otros dispositivos.

 

 

Figura 8: Dipolo con balun y con unun en la estación

 

¿Pueden dar problemas otros cables?

Es muy posible que en la estación entren otros cables, como por ejemplo los destinados al control de rotores o a la alimentación de preamplificadores. Estos cables son también susceptibles de captar RF y entrarla en la estación, por lo que es muy posible que modernamente debamos tomas precauciones especiales con ellos.

Este problema no se presentaba anteriormente cuando los mandos de los rotores eran electromecánicos, basados en contactos y relés, pero cuando modernamente se basan en electrónica más sofisticada, con conexiones y cables USB para poderlos que permiten su manejo mediante programas de seguimiento de satélites o de la posición de la Luna, el tema empieza a ser preocupante. La conexión USB es muy sensible a la RF, como han podido comprobar todos los que utilizan equipos SDR. Nada que no se pueda resolver colocando ferritas ad hoc  que envuelvan los cables de control de rotores y alimentación.

¿Pueden dar problemas de RF las verticales?

Si la vertical es una Ground Plane con radiales elevados (Figura 9), puede dar exactamente los mismos problemas que  un dipolo, por lo que es imprescindible utilizar un balun, preferiblemente de tensión, en el punto de conexión  con la antena. De lo contrario, nos arriesgamos a tener Rf en la estación.

 

Figura 9: Vertical GP sin balun

Figura 10: Vertical GP con balun

¿En qué tipo de antenas es necesaria una auténtica toma de tierra de RF?

Evidentemente en todas las que pretendemos utilizar la tierra como contraantena, es decir las que solamente disponen de la mitad del radiante en comparación con un dipolo o antena simétrica, es decir, verticales , hilos cortos e hilos largos.

 

Figura 11: Vertical con tierra natural

Figura 12: Vertical con tierra y balun

 

De todos modos, aunque no sea imprescindible, en cualquier antena vertical con tierra natural (figura 11)  es siempre recomendable la colocación de un balun de tensión para asegurarse de que hay un circuito de descarga de estática a tierra por el devanado central del balun de tensión de tres hilos (figura 12). Claro que eso podría también conseguirse por un método más barato de colocar una resistencia de carbón de 1 Megohmio entre el vivo y la masa, que no absorbería potencia RF y apenas se calentaría, pero  nos descargaría la electricidad estática, pero la pregunta es ¿dónde la colocaríamos?

   

Figura 12: Antena de hilo corto

Figura 13: Antena de hilo largo

 

Si la antena es de hilo corto (< 1 L) como la de la figura 12, por favor, no le pongáis un balun de 9:1 porque la impedancia de la antena es menor de 50 ohmios. Aquí pensamos que un hilo largo es algo que tiene poco más de un cuarto de longitud de onda y eso no es así. Una antena de hilo largo (Figura 13), para que tenga una impedancia que se acerque a los 600 ohmios de una línea de transmisión de un hilo con tierra, necesita tener una longitud de más de 2 L para que su impedancia sea suficientemente elevada para acercarse por lo menos a los 400 ohmios y aaptarse con un balun 9:1. Una auténtica antena de hilo largo con varias longitudes de onda alcanzaría una impedancia de 600 ohmios, la impedancia de una línea de transmisión formada por un hilo horizontal y la tierra.

¿Cómo deben ser las auténticas tomas de tierra de RF?

La mayoría de radioaficionados considera que una pica de 2,5 metros  clavada en tierra es suficiente para realizar una buena toma de tierra de RF. Sin embargo, la práctica nos demuestra que la resistencia de una pica clavada en tierra se encuentra sobre los 20-40 ohmios en un suelo de conductividad media. Esa resistencia es excesivamente elevada para nuestros propósitos.

En efecto, si tenemos en cuenta que la resistencia de tierra queda en serie con la resistencia de radiación de una antena de por ejemplo de ¼ de longitud de onda (37,5 ohmios), nos encontramos con que el rendimiento de la antena sería como máximo del 50% y eso ya son 3 dB de pérdidas en la potencia radiada por la antena.

La conclusión es que deberíamos reducir esta resistencia clavando por lo menos 4 picas (Figura 14)en los vértices de un cuadrado con una separación de por lo menos un metro de lado. De esta forma, conseguiremos reducir la resistencia de tierra a unos valores de entre 5 y 10 ohmios, con lo que aumentamos el rendimiento de la antena hasta un 75-90%, un valor muy aceptable, pues representa solamente unas pérdidas de décimas de decibelio.

 

Figura 14: Toma de tierra efectiva con 4 picas

 

73 Luis A. del Molino EA3OG